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SUMMARY

~Z-» An outline of Nisitani’s body force method is presented and
details ‘of the numerical implementation provided. Full details are provided
for the solution of several problems including single cracks or single elliptical
notches in semi-infinite plates as well as the problem of an embedded crack
near a semi-elliptical notch in a semi-infinite plate.

RESUME

Une description de la méthode des forces de Nisitani avec des
exemples numériques est présentée dans cette note. Les exemples de
résolution de problémes sont trés détaillés et comprennent notamment des
problémes de fissures uniques ou d’entailles elliptiques uniques dans des
plaques semi-infinies ainsi que le probléme d’une fissure située & proximité
d’une entaille semi-elliptique dans une plague semi-infinie.
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'?:_ IMPLEMENTATION OF NISITANI'S BODY FORCE METHOD

FOR THE SOLUTION OF NOTCH PROBLEMS

1.0 INTRODUCTION

Efficient use of fracture mechanics methods for damage tolerance assessments depends upon
knowledge of the stress intensity factor for the flaw considered. While these are available for some
simple crack geometries, it is often necessary either to resort to some approximation or employ a
complex finite element program to obtain the information. Alternatively, a boundary integral
§ approach may be used which may in some cases be more efficient.

One such approach is the body force method proposed by Nisitanil!], This is a relatively
straightforward technique in principle which makes use of the stress field derived from point forces
acting in an infinite plate or body. Boundary conditions are satisfied by applying body forces
(continuously embedded point forces) along the edges of notches or cracks (the density of these body
forces being determined from the boundary conditions). The method is applicable to both two and
three dimensional problems.

550

In attempting to use this method following the work of Nisitani, it was found that certain
details of the technique were absent or available only in the Japanese literature, and it therefore seems
appropriate that, having implemented the method at NRC, the details of the implementation be
reported. Thus for the particular problems studied, all the relevant information from various papers of
Nisitani have been brought together and all the details necessary for implementation are given in
this report. An additional report!2! is available on request which contains listings of the computer
programs developed with appropriate documentation. l

- NP Y

2.0 PRINCIPLES OF BODY FORCE METHOD

s & 8

In order to make this report more complete, a brief review of the principles of the body
force method will be presented. The review follows that of Nisitanil!] but various points which were
found difficult to follow have been amplified while others which were considered to be unnecessary
for a general understanding of the method have been omitted.

2.1 Tension of Infinite Plate with an Elliptic Hole

Consider the problem of an elliptical hole in an infinite plate as shown in Figure 1. If a
stress, a;, is applied at infinity, the x and y components of the displacement, u and v, at an

i; :;b[lstf"y point (¢, 7) on the edge of the hole are independent of the Poisson’s ratio, v, and are given

b}

17

: .

) u= ) (1+2b/a) ¢ (1a)
3

? °i'

. and ve-g (1b)

P =, W

where E is the Young’s modulus and b and a are the semi-major and semi-minor widths respectively
of the ellipse.
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-; Now consider an elliptical plate of the same size and shape as the hole. For the
3 "- displacements on the edge of this plate to be the same as for the edge of the hole, the strain
! components at an arbitrary point on the plate must be

? ‘, du %

2t T (1 + 2b/a) (2a)

. ov ox
S48 AN 2b
333
35 and Yy = 0 (2¢)
; _'t where € and vy are the normal and shear strains respectively. From Hooke’s law, the normal and shear
é 4 stress, 0 and 7, corresponding to these strains are
i<}
B E oy
N o, = (e, + vey) = (1 +2b/a-v) (3a)
J ):‘ 1- 92 1-
260
0%
e _E _ 7%
N o, = ) (ey +vey) = ; (1-v(1+2b/a)) (3b)
P, 1-v 1-»
ot
3 ',-:t
;' Txy = GYyy = 0 (3¢)
N The elliptical plate having these surface stresses can be inserted exactly into the infinite plate with
%f,s the elliptical hole subjected to a stress 07, producing an infinite plate with no hole. Therefore the
_ ::: problem of an infinite plate with a hole is equivalent to the problem of an infinite plate with no hole,
e q but having the stresses given by Equations (3) applied along the imaginary boundary of the ellipse as
o shown in Figure 2. These stresses are obtained from a series of continucusly embedded point forces
] along the boundary.
-513) The densities, p, and p,, of these body forces in the x and y directions can be obtained
b from Equations (3) as
oz
() px = (1 +2b/a-) (4a)
j \ﬁ 1-2
o
W \‘f{
)7
5N "%
and py = (1-v (1 +2b/a)) (4b)
: 1 - Vz
1
i
o where ‘unit length’ is measured in y direction for p, and in x direction for Py.
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v .3.
3 Since v does not affect the end results according to Nisitanil!l it may be set to zero and the body
b5 forces written

px = 07 (1 +2bja) (ba)
3& and py = ~0Y (5b)
_.’; Thus for an elliptical hole in an infinite plate the densities of body force are constant along the

! boundary of the hole. In general, however, they will not be constant and a numerical technique must
1 3_‘3 be used to determine them.

2.2 Tension of Infinite Plate with a Crack

The case of an infinite plate with a crack under tension is shown in Figure 3. A crack can
be considered as an extremely slender elliptical hole. As b/a tends to infinity, the hole becomes
a crack and the points at which body forces are applied come closer to each other. Thus the
fundamental stress field is obtained from a pair of point forces equal in magnitude and opposite in
direction.

To find the stress at an arbitrary point (x, y) due to a pair of point forces separated by a
distance & from each other, consider Figure 4. The stress at (x,y) in the x direction due to the body
forces X acting on the element dn may be written J

5y
3

= X oX (z,n,x,y)l

:
)

-Xo) (¢- 6,n,x,y)| (6)

where 0% is the stress in the x direction at (x,y) due to a unit body force in the x-direction at
(¢£,m). This may be written

aoX
= (X9) (7)
o
: ¥
£ But the point force X can be written
3
X = p,dn (8)

Y X

T

3

e
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and for the very slender ellipse (i.e. small §)
5 = 2¢

Therefore, substituting Equations (8) and (9) into (7)

doX
% = 3 (pydn 2¢)
X=1
i aoX
or do, = lzi—rflo (pxd‘n)—a-é- 2f
5 X=1
doX
= — P2k dn
9% |x- ) ls-o
£=0
But for an ellipse
2 2
E-q.l =1
a? b?
a
r = — Vb?-nt
o ¢ o n

and from Equation (5a)
Py = o; (1 + 2b/a)

Thus substituting Equations (5a) and (11) in (10)

90X
do, = — « 40= Vb2 -n? dn
9% |x=1 *

E=0

.........

From the fundamental stress field for a point force acting in an infinite plate (see Appendix 1)

X = T X-DBE-D+y-mh)
am (x- g2+ (y-n)? Y

- LIS T

9)

(10)

(1)

(5a)

(12)

(13)
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3oy -3x* +6xi(y-n)’ + (vy-n)*
therefore 3 = (14)
€l an(x? + (y-n)? )
£=0

_",' To determine the stress at an arbitrary point (0,y) on the y axis (i.e. on the crack line)
X Equation (12) must be integrated and added to the uniform stress at infinity o7, i.e.
oy p 4 2 2 4

" -3x* +6x3(y-n)+(y-
b 0,.(y) = lim f ( ony *v-n)) (40‘; m) dn| +oc (15)
e b an(x + (y-n)? )
b ]
When |y| > b, i.e. beyond the crack, x may be set to zero directly and Equation (15) may
i be written

]
A

..o'
o . b
Oy J‘\/bz-‘nz

- o,(y) = — dn + o

- m 2
:::.. S G-
W
%
\".b o b
o Y A S N b | _, | yn-b? .o
7 m y-1n b y2-b? b(y-n) *
..,:2 -b
by

{’s

| lylaT

.:-: \/yZ_bZ

.;;

o

' o, Vb

0N = —_— forr = |yl-b <€ b (16)
'-):‘3 N

’

s

-l
< K,

o or o (y) = —— (17)

Ve

where K, is the mode 1 stress intensity factor

For |y| < b and x = 0, the integral contains a singularity at y = n, so principal values
must be taken to evaluate it. Denoting the integrand as f(n), Equation (15) may be written

2 3 \‘_.-7 "- g A
UL’. .‘A-‘A:‘l:‘ » -“.'?f.f d

'
l..0
o
.
o,
o0, ™ A e el et et ettt e e N N T A T AT T e v T e e T T
R T NS I R R S R I I S \.\‘_' R R L N T A S T T S N
- MRS ML AL LR VAR PV VAT VR W VR W VI VAP WL WA o A A Wi I WO




M
Ky
+
’
.
’
.
[
.
]
.
'
4
’
'
.
3
[
(4
.
.
.
»
»
0
s
.

......................

-6-

X

N b

_\'

) 0, ) = lim j fnydn + o

2" Xx—

-b

% = lim f f(n)dn + f f(n) dn

N -b y+te

i

‘ ‘

%) + lim j f(n)dn + o7 (18)
¥ X

-€

e

¥ . _
= The first two integrals contain no singularities and may be integrated directly by setting x = 0. The
oY result isl!] for |e| <€ b:

'J‘.

3 b

a 9510 f f(m)dn + J f(m)dn| = [F(y-e) - F(-b) + F(b) - F(y+e)]

% y+e

:: 0: 2 ,/bz - yz

"j = = |—]-0 (19)
", 4 €

>

9]

: 0; \ /b2 _ n2

'?;.f in which F(n) = — f — dy

7 i (v - n)?

53

¥; _ % vbi-q? sin (_)

ey | v-n
»

NG P (b2 -yn) + V(b2 - y?) (b7 - n?) 20)
:3 Vbl -y? b(y-n)

.,
3 The third integral contains a singularity when x = 0, so it is not permissible to set x = 0
b before performing the integration. The integration must be performed first before the limit is taken.

W . . .

N For ¢ € b, Vb?-7? may be approximated by Vb2 - y2 which may then be taken outside the

) integral. Then setting t =y -

2

d
%

e

N Ly (L
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5 yte ™ €
g - 3x4 + 6x2t2 + t4 T

N lim fmydn = lim | = Vb?2-y? J d

o x—0 - m (xz + t2 ) 3
ad y-¢€ - -€ ol

f - 20 € 2x%e

‘ = lim Vil -y?

x~0 4 x2+e  (x?+¢2)2

. 207

. = - — Vb?-y? (21)

. e
_. Substituting Equations (19) and (21) into (18) yields the result

4
¥

4
- o,(y) =0 for lyl <b (22)
v Equations (22) and (17) show that the problem of an infinite plate with a crack can be

i reduced to that of an infinite plate without a crack but subjected to body forces along the imaginary
) crack line. The stresses at an arbitrary point are obtained by integrating the stress field for a pair of
K point forces.
. It is also clear from examination of Equation (20) that the same result would be obtained
¥ by ignoring the singularity, and in fact no special consideration is necessary when integrating these
v expressions analytically.
‘V
v The strength, dR, of a pair of point forces has been expressed as the product of the
v magnitude of the forces, X, and the distance between them, §,
A
F ie. dR = X5
&
3 or, from Equations (8) and (9)
é dR = p, dn2t

£—0

“a-al

Then the density of a pair of point forces, dR/dn, is obtained as

R 020 22)
dn x ’ (=0

e "a_a a0t

which for a crack in an infinite plate may be written using Equations (5a) and (11) as

' dR
M — = 40" Vb?- 2 (23)

. - - - 4
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h"’
EN S However, for convenience, Nisitanil!], has defined a quantity, v, which for the crack in
::-’_\ the infinite plate is given by
-0
1 dR

<. YR (24)
. 4 /b2 - ,n2 dn
Y
R

2 and which he calls the density of a pair of body forces.
NG (The reason for using this quantity, rather than dR/dn directly, is that the variation in 7 along the
:'\j crack line for general problems will then be small, and so setting y = constant within an interval will
e result in an accurate solution).
AN

o
T8 Comparing Equations (23) and (24), for the crack in an infinite plate, v is constant and equal to o7 .

] Thus from Equation (17)

‘o‘;:z‘.‘

LY
‘-,:: K, = vV/7b _ (25)
£33

p

. For other crack problems, the densities of pairs of body forces y will not be constant, but will vary

ey along the crack. For these problems a numerical method must be used to determine the densities of
"&: body forces at the tips of the cracks v, and yg. From these the stress intensity factors K, , and Ky
:-'-'3. at each tip can be calculated according to Nisitanil!l as

R

Kia = 7aV70
g
r‘:_; (26)

\{; Kl B Y8V b

NI z
Ve 3.0 NUMERICAL TECHNIQUE
i
'
3.1 Crack in a Semi-infinite Plate
o 3.1.1 Formulation
i .:\
"}: Consider the case of a crack in a semi-infinite plate under tension as shown in Figure 5.
R Whereas in an infinite plate the densities of pairs of body forces, 7y, were constant along the crack,
_‘ here the densities vary continuously.
= A If the crack is divided into MM equal intervals and < is set constant within each interval, a
-.js stepped distribution will result which will be accurate for large values of MM. The derivative of the
~

stress field due to a point force in a semi-infinite plate is used to determine the stresses at the mid-
point of each interval due to the body forces and the boundary conditions that the mid-point of each
interval be free of stress are applied. The densities of the pair of body forces in each interval can then

vrv:
!
f o o ¥ o ]

s be determined.

:: The stress intensity factors at both tips of the crack can be calculated using only the
f_“.:f densities v, and vyy at the ends of the crack. The stresses at an arbitrary point on the plate can be
R found by taking a linear combination of the body force densities.

e
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.'\i
50 3.1.2 Solution Sequence
E}:‘. (1) The crack AB is divided into MM intervals, with the end points of the N-th intervals having
i values of 7 of
~
s n.g = e-b+2(N-1)b/MM
1~
‘ 7y = e-b + 2Nb/MM
i
frj where b is the half length of the crack and e the distance from the centre of the crack
s to the edge of the plate as shown in Figure 5. The mid-point of the M-th interval has a
& co-ordinate, y of

ym = e-b + (2M-1)b/MM
§ (2) The influence coefficient o;s, which is the stress at the mid-point of the M-th interval due
. to a pair of body forces on the N-th interval having a density yy = 1, is given by
[y

1 203
oTN = f — - 4Vb2-(n-e)? dn

o
e N.m xx ==El=o
. interval
“
N
, Using the fundamental stress field for a point force acting in a semi-infinite plate
[ Appendix 1] this may be written
iy N 5
) 1 1 12 12 1
¥ ofm = f - $= e ) = VT e dn
3 (y-n? +n)? @+n)?® @+w)t| 7
NN-1
".' This integral can be solved either analytically (see 3.1.3 and 3.1.5) or numerically, with the
ﬁ singularity treated in the same manner as for the infinite plate.
4
5 (3) The boundary conditions are applied to make the mid-point of each interval free of
stress, i.e.
%
s
- MM
E YNOTy + 07 =0 for M=1,2...MM
N=1

This results in a system of MM linear equations in MM unknowns, vy, which can be solved
using a matrix inversion routine.

YN Y ' WX
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(4) The stress intensity factors K;, and K, are then calculated from v, and yyy as

KIA = 71V7rb and KlB = 'YMMVﬂb

(5) The stress at an arbitrary point P on the plate can be calculated from the influence
coefficients for that point and the body force densities, i.e.

MM

= Z : TN o
Oxp < 'YNO +ax

N=1

(6) For finite values of MM there will be errors in K, , and K, because of the approximation
of a stepped distribution. The true valuesof K, , and K, correspond to MM = o, Since
Nisitani has shown the error to be proportional to 1/MM these values can be obtained by
extrapolation from two values of MM such as 12 and 24.

3.1.3 Analytic Integration
The integral in 3.1.2 in the calculation of o"a was performed analytically. The result is

shown in Appendix 2. Although the integral involves a singular term in the case where M = N, no
special consideration is required as illustrated earlier.

3.1.4 Results (Analytic Integration)

Table I Lcompares the correction factors, F;,, obtained in the present investigation with
those of Nisitanil!! for various values of the number of intervals MM, for a crack with a b/e ratio
of 0.5.

TABLE I

CRACK IN SEMI-INFINITE PLATE

MM F, , (this work) F, . (Nisitani)

12 1.090367 1.09033 bje = 0.5

16 1.090622 1.09063

24 1.090919 1.09091 K,
32 1.091024 1.09104 Fip = ——
48 1.091243 1.09115 oy Vb

The agreement is very good and the minor discrepancies can be attributed to computer differences.
The correction factor F,, is plotted against 1/MM in Figure 6. The error in F A isalmost

linear with respect to 1/MM, with the value of F, tendmg to 1.09149 as MM tends to mfimty This
compares with the value of 1.0914 obtained by Nisitanil!1.
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3.1.5 Numerical Integration

For most problems, the integral for the influence coefficients cannot be integm.ted
analytically as in 3.1.3 and the integration must be performed numerically. To check on sun!,able
parameters for these integrations, the integral of 3.1.2 used to evaluate o}M was also solved using a
numerical integration routine.

When evaluating the influence coefficients for M = N, i.e. the stresses at interval M due to
unit body forces in the same interval, there is a singularity which must be taken into consideration
when using numerical integration. The integrals either side of the singularity are evaluated in the
normal manner and the integrand is approximated in the area of the singularity as follows:

y+te
1 1 1 12 12y?
Fe) = = f e =L 22 T (n-e) dn
v
- €

v -7 (y+n)?  (y+n)® (y+n)

For small ¢ this becomes

+€

«

L Vb2-(n-e)? dn

1
F(n) =
L (v-n)?

I
s

y—

Also forsmall €, n ~ y

yte
1
Fm) = —Vb?-(y-e)’ f

y-€

dn
(v-n)?

= _E. \/b2_(y_e)2

e

Thus the total integral over an interval [ny_,, 7y] Which contains a singularity can be evaluated
numerically as the sum of three integrals over three sub-intervals, the outer two being performed
using a standard numerical integration routine, while the middle one is a simple analytic expression.

3.1.6 Influence of Integration Parameters and Computer Precision

The influence coefficients which involved the singularities, o;M , were found to be affected

by the choice of € in the numerical integration. The error was linear with respect to ¢, however, as
shown in Table II, s0 extrapolation of the true value am was straightforward.

The integration parameter ¢ was always calculated as a linear function of the fraction of
the interval (FRAC) which is to be evaluated analytically around the singularity. In this way, as the

intervals become smaller (as MM is increased) the value of € shrinks accordingly without any change
to FRAC.
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TABLE 11

INFLUENCE OF ¢ ON ERROR IN o)}

FRAC € ERROR IN o]]
0.020 0.0020 0.00748
0.018 0.0018 0.00673
0.016 0.0016 0.00599
0.014 0.0014 0.00525
0.012 0.0012 0.00451
0.010 0.0010 0.00377
0.008 0.0008 0.00304
0.006 0.0006 0.00230
0.004 0.0004 0.00160
0.002 0.0002 0.00095

Results for crack in infinite plate in the interval [1.0, 1.2]
e=20;b=10;y=1.1; MM =10; ¢ = FRAC * b/MM r

The correction factors F;, and F,; where

K;

07 /b

F, =

and stress intensity factors were also found to vary linearly with respect to €, so for a given MM,
three or four values of € were used in the numerical integration and the true values were extrapolated
using linear regression.

The number of digits of precision specified for real program variables in the computer
calculations was found to have a great effect on the results. For the NRC IBM 360 system, a ‘single
precision’ real variable has six digits of precision, while a ‘double precision’ variable has fourteen. For
these calculations it was necessary to specify double precision for all real variables.

The primary reason for this is that for small values of ¢, several digits of precision are lost
in the integration over intervals containing the singularities. When evaluating the integral over the
three sub-intervals, the outer ones produced large positive numbers, while the centre produced a
large negative number. When the three were added, the result was a number close to zero. Thus in the
addition three or more digits of precision were lost.

3.1.7 Influence of Number of Intervals

Figure 7 shows that the error in the correction factor or stress intensity factor was linear
with respect to 1/MM, and true values were therefore obtained by extrapolation to MM = oo,




3.1.8 Results (Numerical Integration)

Table III compares the results obtained by numerical integration with those obtained
analytically for various values of MM. The agreement is good and discrepancies can be attributed to
approximation errors in the integration routine.

TABLE III

COMPARISON OF F,;, OBTAINED BY NUMERICAL AND ANALYTIC

- INTEGRATIONS FOR CRACK IN SEMI-INFINITE PLATE
'-
3
MM FRAC (EXTRAPOLATED) ANALYTIC
! 0.03 0.02 0.01 0.00 INTEGRATION
3,
'
o 12 | 1.096155 | 1.094206 | 1.092265 1.090319 1.090367
= 16 | 1.096337 | 1.094411 | 1.092468 1.090536 1.090622
$ 24 | 1096515 | 1.094635 | 1.092756 1.090876 1.090919
*‘ 32 | 1.096554 | 1.094688 | 1.092795 1.090920 1.091024
Y 48 | 1.096608 | 1.094777 | 1.092938 1.091104 1.091243
= b/e = 0.5 € = FRAC - b/MM
= ot
)
-

The correction factor F;, as € tends to zero is plotted against 1/MM in Figure 7. Once
again, the error in F;, is nearly linear against 1/MM and the value tends to 1.091352 compared
with a value of 1.091490 using analytic integration and 1.0914 obtained by Nisitanil!!,

3.2 Edge Crack in a Semi-infinite Plate

3.2.1 Formulation

The case of a crack at the edge of a plate as in Figure 8 is similar to the case of an embedded

crack. The edge of the plate is placed at the centre of the crack, so that the distance, e, from the edge
to the centre of the crack is zero.
A
p 3.2.2 Results (Numerical Integration)
} Table IV shows the correction factor F,y for various values of the number of intervals,
::_:f MM, and the integration parameter, FRAC, together with the extrapolated values for FRAC = 0.
The correction factor F, g is plotted against 1/MM in Figure 9. The error in F, is almost
e linear in 1/MM with the value tending to 1.1213 as MM tends to infinity. This compares with a value
= of 1.121 given by Nisitanil).
"::o
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N3 TABLE IV
SN
s
b COMPARISON OF F,; FOR EDGE CRACK IN SEML-INFINITE PLATE
. AT VARIOUS VALUES OF MM
>
o MM Fip
- FRAC 8 12 16 24
)
3 0.03 1.096820 1.098911 1.099955 1.101096
,':’ " 0.02 1101942 1.104243 1.105375 1.106618
“ 1 0.01 1.107365 1.109990 1.111269 1.112726
0.00 1.112587 1.115460 1.116847 1.118443
‘ ""‘ (EXTRAPOLATED)
N
"
;‘{ Kip
A € = FRAC * b/2MM : Fig =————
oy Vmb
e
! 3.3 Elliptical Hole in an Infinite Plate
>3 The numerical solution of problems involving holes is a little more complex than for cracks.
i It was therefore decided to first try the simple problem of an elliptical hole in an infinite plate since
. the body force densities are known and constant in this case, and this allows an intermediate check of
Ul the program.
)
*'::: 3.3.1 Formulation
Y "‘.'d,
The elliptical hole shown in Figure 1 is divided into MM equal intervals and the body force
N densities, p, and p, are set constant within each interval. The influence coefficients are calculated
S from the stress field for a point force in an infinite plate and the boundary conditions that the mid-
o3 f point of each interval be free from stress are applied to determine the body force densities. The stress
Oa concentration factors and the stresses at an arbitrary point on the plate can be found from a linear
o combination of the body force densities.
3.3.2 Solution Sequence
7 1' (1) The ellipse is divided into MM equal intervals, using the elliptic parameter ¢ used in the
N equations of an ellipse:
e
, £ =acosy ; n = bsing
§ :j The values of ¢ at the end points of the N-th interval are
P
PN-1 = -7/2 + 2(N-1)7/MM
-
%
"4 and ¢N = -7/2 + 2N7/MM
’\
"
-.‘)q
id

e ’-fs.. NIRRT .._.A.V_’-. ;

eV wY v, D T N P S Lo s N




-15 -

The value of ¢ at the mid-point of the N-th interval is

¢ = -%/2 + (2N-1)a/MM

The x and y values of the mid-point of the N-th interval are

[ ]
"

acos (-7/2 + (2N-1)a/MM)

b sin (-7/2 + (2N-1)n/MM)

<«
]

. . XN, YN, XN_. YN, XN, _YN .
(2) The influence coefficients, OuM > Oxm> Tym s Oym s TxyMs TxyM» which are the stresses at

the mid-point of the M-th interval due to a body force on the N-th interval having densities
px =1 or p, =1 are given in Appendix 3.

In the program listed in Reference 2, the influence coefficients for each point on the ellipse
have been calculated. However, because of symmetry about the x and y axes the influence
coefficients need only be calculated for one quarter of the ellipse, although for that quarter,
all the influence coefficients must be calculated, i.e. the effects ‘of body’ forces around

the total ellipse must be calculated.

(3) The boundary conditions to make the mid-point of each interval free from stresses are

applied; i.e.
MM
E PxN (ofs cos 6 + 1';‘;;’ sin 6)
N=1
MM
+ E pyN(aI;: cos 0 + TryNM sinf) + o cosd = 0
N=1
and
MM
E PxN (03(1: sin 6 + r,’fy':‘ cos 9)
N=1
MM
+ E Pyn(0yy 8in 0 + 7N cos§) = 0 (M :1~MM)
N=1

where p,\, pyy are the body force densities of the N-th interval, oy is the stress at

infinity and 0\ is the angle between the x axis and the normal to the ellipse at the mid-
point of the M-th interval; i.e,
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where ) is the value of y at the mid-point of the M-th interval.
This results in a system of 2MM linear equations in 2MM unknowns p,y, AyN-

(4) The stresses at any point P in the plate are calculated from the influence coefficients at |
that point and the body force densities; i.e. |

MM
- z : XN YN w
oy = ("x? Pyn ¥ Oyp pyN) + o,
N=1
MM
_ z : XN YN
Oy - (oyl’ PxN ayP pyN)
N=1

n‘
]

MM
E XN YN
+
Xy (TxyP pr TxyP pyN)
N=1

(5) The stress concentration factors K, , K|p are then calculated:

o, (at A)/a;’('=

Kra

o (at B)/o?"

Krs

(6) Because the body force densities are constant around the ellipse, there will be no error due
to the choice of the number of intervals MM. Therefore the value of the stress concentration
factor will be the same regardless of the number of intervals.
3.3.3 Numerical Integration

In the numerical integration, the stress field equations have a singularity at y = n and
x = {, i.e. when the stresses are evaluated at the mid-point (x,y) of an interval due to a point force
X or Y on the same interval. Integration is straightforward over all other intervals.

In order to integrate over the singularity, principal values of the integral are taken by
splitting the integral in three disjoint subintervals

[‘pN-l"leD-e]; [‘PM")_ENPMID"'G]; [WM")*'E:*PN]

where X = acosyyn; ¥ = bsingy,,

& GRARIS NLY SRR
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‘:.fi The integrals F; (¢) and F;(p) over the 1st and 3rd subintervals are straightforward because
- the singularity occurs in F, over the 2nd subinterval.
X
If € is small relative to the length of the interval [¢y_;, ¢vn], F3(9) can be approximated
. by a function which contains no singularity (see Appendix 4).
:“: For this same M-th interval when x = £ and y = 7, the stresses AoX, AaY, AdX, Ao),
:,; Arffy, AT}{Y which are the stresses at a point infinitesimally close to the ellipse subjected to a body
e force must be added to oXM, oY}, a;‘#, LA ri‘ym, Tbe;{ respectively.
It can be shown (Appendix 5) that these additional stresses are
r\j‘
2 1
e X =
%d Aoy = - — (5+4 cos 20 - cos 40)
N oy=1 16
:! AoX -1 (1 - cos 49)
.:j ’ Py=1 16
X
4
P 1
X = _ N e
Arxy 16 (2 sin 20 - sin 48)
px=1
§ and
Ky, v 1
7 Aoy = 16 (1 - cos 46)
,\ py =1
X
Ao = - — (5 - 4 cos 20 - cos 48)
py=1 16
y
g’j ArY " 2 sin 20 + sin 40
é Txyp_l——ls(sm + sin 40)
: y~

, where 0 is the angle between the x axis and the normal to the ellipse at the mid-point of the M-th
NG interval.
N

3.3.4 Results

-/

Table V shows the body force densities p, and p, for each interval of a circular ellipse in
an infinite plate.

¢ o

VAR

The results are identical to those predicted by the theory in Section 2.1. The body force
densities are constant around the ellipse and agree with equations

b

pPx = 0, (1 +2bja) = 307 =3

b
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[}
]
Q
> 3
It
'
-

NaSE

wNal |

.
L]

N A N AL NN T N et "'-"'-":-":o".r". e e e e e L “"';"-'."; -~



AR AL CACR L IR ¢ DS g SR N S A S e R A A A S O e e e AR O O e AR |
N
— - 18 -
7.
LA
P oo TABLE V
R
<
XN BODY FORCE DENSITIES FOR CIRCLE IN INFINITE PLATE
':,\‘;:‘ Interval Px Py
28
B 1 3.000000 -1.000000
X 2 3.000000 ~1.000000
e 3 3.000000 ~1.000000
y 5 4 3.000000 -1.000000
e 5 3.000000 -1.000000
- 6 3.000000 -1.000000
1 3.000000 -1.000000
3 8 3.000000 -1.000000
4;_3
v MM = 8; FRAC = 0.02; € = FRAC * /MM
2N a=10; b=10; o7 =10
2 3.4 Elliptic and Semi-elliptic Hole in a Semi-infinite Plate
;.ﬂ:.
o 3.4.1 Formulation
oLy
. For the case of an ellipse or a semi-ellipse in a semi-infinite plate, Figure 10, the densities
¥ of body force p, and p, are no longer constant as in the case of the ellipse in an infinite plate.
::. Instead the densities are continuously varying around the edge of the hole.
i
SN If the elliptic hole is partitioned into MM intervals and p,, py are set constant within each
._{; interval, the continuously varying densities will be replaced by a stepped distribution which will be
o accurate for large values of MM.
R The stress field due to a point f >rce in a semi-infinite plate is used to evaluate the stresses
N at the mid-point of each interval. The bor  ry conditions that the mid-point of each interval be free
‘;. from stresses are applied and the values of the body force densities can then be evaluated.
+HY
- The stresses at an arbitrary point in the plate and the stress concentration factor (SCF) at
.y the top or bottom of the semi-ellipse or ellipse can be calculated by taking a linear combination of
o | the body force densities.
A
_ ::: Due to the symmetry of the ellipse or semi-ellipse about the y-axis, only half of the
200 influence coefficients need to be calculated although, as before, they must be evaluated for body
b, forces around the total ellipse.
e 3.4.2 Solution Sequence
‘,-. (1) The ellipse or semi-ellipse in a semi-infinite plate is divided into MM intervals. For the
;S ellipse, the values of the elliptic parameter p at the end points of the N-th interval are
e On-1 = -7/2 + 2(N-1)7/MM
(0
o
F3 PN = -7/2 + 2N7/MM
LK
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The x and y values of the mid-point of the N-th interval are

S X = acos (-7/2 + (2N-1)n/MM)
o y = bsin (-7/2 + (2N-1)a/MM)
\‘;':' For the semi-ellipse, the values of ¢ at the end points of the N-th interval are
i onog = (N-1)7/MM
2 oy = Nm/MM
A
.
B The x and y values of the mid-point of the N-th interval are
&) x = acos (N-0.5)m/MM)
o y = bsin (N-0.5)7/MM)
(2) The influence coefficients ofhl:, a},};‘, o;,(ﬁ , o;,{,&‘ , 'r,)fym, 'rZyNM, which are the stresses at the
e mid-point of the M-th interval due to a body force on the N-th interval Y in a semi-infinite
i plate having density p, =1 or p, = 1 are given in Appendix 3.
N
L (3) The remainder of the solution sequence is identical to that for an ellipse in an infinite plate.
3.4.3 Influence of the Integration Parameter
-4
:“: The method of numerical integration is identical to that for an ellipse in an infinite plate.

However, for a semi-infinite plate the influence coefficients which involve singularities and hence
the stress concentration factors are affected by the choice of the value of € in the numerical

NNy

integrations.
V Table VI shows the stress concentration factors obtained for various values of the
:3 integration parameter € for a semi-ellipse with b/a = 2.0 in a semi-infinite plate.
%
ha TABLE VI
s
:j EFFECT OF ¢ ON SCF FOR SEMI-ELLIPSE
) IN SEMI-INFINITE PLATE
~
N FRAC SCF
) 0.010 5.187062
351‘ 0.008 5.185324
2,, 0.005 5.182725
2 0.001 5.179275
o extrapolated to 0 5.1784

MM = 16;a =1, b = 2, e = 0, ¢ = FRAC * n/MM
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! _: In Figure 11 the SCF is plotted against €. The error in the SCF is almost linear in €, and
\ tends to 5.1784 as € tends to zero.
O
i Because of the linearity of the error in the SCF, it is only necessary to obtain two or three
. " values of the SCF for different values of € and extrapolate to obtain the value of SCF for € = 0.
}_:-: Another method of approximating the true SCF for a given number of cuts is to choose €, small
-_'f- enough that the difference between the value of the SCF at € = 0 and the value at ¢ is negligible.
g
5 3.4.4 Results
- Tables VII and VIII compare the results obtained for a semicircular notch, and an ellipse
::~ with b/a = 2.0 and e = 0.5, with those of Nisitanil!-4] for several values of the number of intervals
._(: MM. The agreement is excellent. Discrepancies can be explained by the fact that the integration
:f parameter € is taken to be very small, but no extrapolation has been done to determine the true
o value at € = 0. This was done to reduce the amount of computer time used.
3, TABLE VII
)
A
o
'\-:.: STRESS CONCENTRATION FACTORS FOR A
T SEMICIRCLE IN A SEMI-INFINITE PLATE
¥
o Krs Present Results Nisitani[4)
'\': MM
i 16 3.053872 3.0527
:'::'_. 24 3.057044 3.05595
.::: 32 3.059274 3.05908
v 48 3.061416 3.06123
b a=1;b =1; FRAC = 0.001
i \::
- TABLE VIII
- :\.
::.:: STRESS CONCENTRATION FACTORS FOR AN
':::'. ELLIPSE IN A SEMI-INFINITE PLATE
'y
: K14 Present Results Nisitanil !}
B~ MM 1
o 16 5.696703 -
N 24 5.715367 5.7147
4 32 5.724825 5.7243
§z 48 5.734337 5.7340
- a=1,b=2 e = 05; FRAC = 0.001
2.
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o

oo Figures 12 and 13 show K;, and K;p as a function of 1/MM. The error in the K 's is

:'.'-j almost linear in 1/MM. For the semicircle on the edge of the plate, K1y tends to 3.0650 as MM tends
- to infinity, compared with a value of 3.0654 obtained by Nisitanil*] and 3.0653 by Isidal’!. For the

ellipse (b/a = 2.0, e = 0.5) K1, tends to 5.75631 as MM tends to oo, compared with a value of 5.753
obtained by Nisitani.

3.5 Combination of a Crack and an Elliptical Hole in a Semi-infinite Plate

3.5.1 Formulation

Figure 14 shows the case of a crack and an elliptic edge notch in a semi-infinite plate. As
before, the semi-ellipse is divided into M1 equal intervals and the crack into M2 equal intervals, with
the body force densities set constant within each interval. The stress field due to a point force in a
semi-infinite plate and its derivatives are used to calculate the stresses at the mid-point of each interval
on both the crack and the semi-ellipse due to the body forces on both, and the conditions to make
the mid-point of each interval free of stress are applied. The body force densities can then be
determined as before.

3.5.2 Solution Sequence

(1) The semi-ellipse is divided into M1 equal intervals. The end points of the N-th interval
have y values

on-1 = (N-1)n/M1
¢y = Nu/Ml
where v is the elliptic parameter such that
§ =acosy; n = bsing

The x and y values of the mid-point of the M-th interval are

L]
I

a cos (M-0.5)n/M1)

b sin ((M-0.5)n/M1)

«<
]

The crack is divided into M2 equal intervals. The end points of the N-th interval have values
on the y axis

NN-1 = e-¢ + 2(N-1)c/M2

Ny = e-c¢ + 2Nc/M2

where e is the distance from the edge of the plate to the centre of the crack, and c is half
the length of the crack.




.......................

The mid-point of the M-th interval has a value
y =e-c+ (2M-1)c/M2
(2) The influence coefficients

XN XN YN YN XN YN

oxMe’ oyMe’ oxMe’ ayMe’ TxyMe’ TxyMe

YN TN ¥N
OxMe>® ayMe’ TxyMe

XN YN
xMc? “xMc

N
and oxMc

are given in the appendices.

The first six coefficients are the stresses at the mid-point of the M-th interval on the ellipse
due to point forces on the N-th interval of the ellipse having densities p, =1 or p, =1
(see Appendix 3).

The seventh to ninth coefficients are the stresses at the mid-point of the M-th interval on
the ellipse due to a pair of point forces in the N-th interval of the crack having density
v = 1 (see Appendix 6).

The 10th and 11th coefficients are the stresses at the mid-point of the M-th interval on the
crack due to point forces on the N-th interval of the ellipse (see Appendices 3 and 6).

The 12th coefficient is the stress at the mid-point of the M-th interval on the crack due to
a pair of point forces on the N-th interval of the crack (see Appendix 2).

(3) The boundary conditions that the mid-point of each interval on the ellipse and crack be

free from stress are applied:
M1
E [pr (a;(se cos 6 + Tff‘m sin 0) + pyN ("I;:e cos § + TIyNMe sin 0)]
N=1
M2

N YN . oo =
+ E N (axMe cos 0 + T/ y, Sin 0) +0. cosf =0
N=1
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Ml
S [pu (sin + S con) « o (im0 + 7l o 9]
N=1

M2
YN . N =
+ E N ("yMe sin 6 + 7, ) COS 0) 0
N=1

M1 M2

XN YN YN o _
E :[pXN Oume t PyN oxMc] + E :7N Oxmc + Ox 0

N=1 N=1

The result is a system of (2M1 + M2) linear equations in (2M1 + M2) unknowns p,, p,
and 1.

3.5.3 Numerical Integration

In the numerical integration of the influence coefficients, singularities occurred in the
evaluation of the first six coefficients discussed in 3.5.2, and in the 12th. The procedure for handling
the first six coefficients is discussed in 3.3.3, while the procedure for the 12th coefficient is discussed
in 3.1.5. However, it is not necessary to evaluate the 12th coefficient numerically. As seen in 3.1.3
(for a crack of length 2¢) or 3.2.1 (for a crack at the edge of a semi-ellipse) the 12th coefficient can
be evaluated analytically.

3.5.4 Results
The values of the correction factors at both tips of a crack in a semi-infinite plate having a

semi-elliptical notch are given for various values of the number of intervals M1 and M2 in Table IX.

TABLE IX

CORRECTION FACTORS FOR A CRACK NEXT TO A
SEMI-ELLIPTICAL NOTCH IN SEMI-INFINITE PLATE

No. of Intervals Correction Factors

M1 M2 Fia Fip

16 16 2.201207 1.935246

24 24 2.211444 1.938788

32 32 2.2175646 1.940605

48 48 2.222124 1.941886
c = 1000; p 1000.0; c/p = 0.1

a = 10000; b = 10000; b/a = 1.0
c/h = 04; FRAC = 0.05; ¢ = FRAC * 7/MM




: i::'. The correction factors are plotted against 1/(M1 + M2) in Figure 15 and again the error is almost
o linear in 1/(M1 + M2). The extrapolated values as M1 + M2 tend to infinity are 2.2329 for F|, and

1.9454 for F;; compared with the values of 2.232 and 1.944 obtained by Nisitanil'l.

4.0 SUMMARY AND CONCLUSIONS

An outline of Nisitani’s body force method has been presented and several problems have
been solved using the technique. The problems include single embedded cracks and edge cracks and
single elliptical and semi-elliptical notches in semi-infinite plates, as well as the problem of an
embedded crack near a semi-elliptical notch in a semi-infinite plate. Results agree very well with those
of Nisitani and solution times are relatively short.

Details of the numerical technique have been presented, including a brief discussion of the
computer precision required and the method for integrating over the singularities. In addition, all the
analytical details for each problem have been presented, gathering together information from several
of Nisitani’s papers, many of which are in Japanese.

Full details of the computer programs are provided in a separate report.
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f.:-j APPENDIX 1: FUNDAMENTAL STRESS FIELDS

'R

b For plane stress, the stress fields at (x,y) for point forces X and Y acting at (£,n) arel!]:

o = -Fe{@+ne + 1 -»m}x

o = Fefa-vne-qa+ 3v)m?} X
= - Fm {(3 +0)22 + (1 - v)mz}x
and
of = -Fm{a+3me-q- y)m2} Y
of = -Fm{(1-ve+@+ v)m?} Y
r}‘{y = - F!Z{(l -2+ (3+ v)mz}Y
for an infinite plate, and

& = [— FR {3+ )82 + (1 - vim?} - G2 {3 +») + (1 - v
-G, {(1 - ) (25 +2(n? - n)3 + n? (n? - 2n)R)

+(1+v)(-2(n? -1)2% + n?(~2n2 + 8n - 6)2)}] X

oF = [FQ {(1'- e - 1+ 3m?}+ G2 {a - e - (1 + 3wt}
-G, {@ -») (@ +2@? + n)? +n? (n? + 20)R)

+(1+9)(2(-n2 +2n-1)2 +n2(-2n2 - 4n + 6)2)}]x

X = [— Fm {3+ )2 + (1 - )m2} - Gn {3+ 2 + (1 - vin2)

+G {1 -) (- % +n*) + (L +v) 6n(n- 1) + 0 (- 20 + )] X




of = [— Fm {(1 +30)82 - (1 - »im2} +Gn {1 + 38 - (1 - vin?}
-Gy{@ - )+ 1)¢* + 202% + 0’ (n? - n))

+(1+v)(2% +n(2n? + 6n - 6)82 +n3(2n2 -4n + 2))}] Y

of = [— Fm {(1- )22 + 3+ »)m2} + Gyn {(1 - )82 + (3 + v)n?}
-G, {@- (- 1)2* + 202 + 0’ (a2 + n))

+(1+v)(n(2n% - 6n +6)22 + n3(2n2 + 2n - 2))}] Y

Y = [— FR{(1- )2 + (3 +v)m2} + G, 2 {1 - 1) + 3+ w2}

-G, {(1-») @08 + 2039 + (1 +9) @2 + n? (B0 - )0)}] Y

for a semi-infinite plate, where
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o APPENDIX 2: ANALYTIC INTEGRATION FOR CRACK IN SEMI-INFINITE PLATE
3
-

Stress at the M-th interval due to a pair of point forces at the N-th interval on a crack:
-

:j N aoX

- oly = j 5 {47N Vbl - (n - e)z} dn

: 3 X=1 N=1

>3 N x=£=0

<

.‘ N 2

: =f ___1__+_l[_1+12y_12y}

) any-n? M +a? @+’ ()

r. MN-1

= X {4 Vo - (n -} an

' where ny _, and ny denote the values of n at both ends of the N-th interval. The integral can be

obtained in closed form as follows!!}:

N

o o4 = Fny) - Flay_y)

N

b in which F(n) stands for

N 1|Vb2-(n-e)? - -

" Fn) = ~|Y2 @) e,  yoe
.2 T y-n b \/bz—(Y°e)2
™

2 Wi |G -e)@-e) + Vb - 7 - e)}{b? - (n- o)’}

J b(y-n)

1| Vb-(n-ep? - + 24(y+ -
_1] (n-e)7 .-11n-¢, yte sin"b (y+te)(n-e)

P " y*n b Vi+ey-p? by +n)

' 6y| Vb%-(n-e)? + + 2 24 (y+ -
X +_y[_ (-e) |, _G*eaG+m], b axmrlb yte)n-e)
N i v +n)? w+er-b | (gaep-p2)2 b(y +n)
-

g 2| VbT-(m-ef ‘_2+ re+m) {2b2+(y+e)2|(y+n)2}

% ” (v + 1)’ (v +e)? -b? {(y +e)? - p2)2

N Loy bl ryre)n-e)

3 b(y +
{(y"_e)z _bz}z ( n)
‘
-
SHNGNEA WS N
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APPENDIX 3: INFLUENCE COEFFICIENTS FOR ELLIPSE

The influence coefficients can be calculated from the stress fields for a point force X or Y
acting at (£,1) (Appendix 1). Since the relations dn = b cos ¢ dy and - d§ = a sin ¢ dy prevail along
the ellipse, the coefficients can be expressed asi!l:

N
XN ..
o)’M - f 0? (E:ﬂ,X,Y)l,(:l b cos "4 dtp
N

oM = fffy (8.0,%,¥)|x= bcospdy
N

and

YN _ .
OxMm = f oy (£,1,%,9)|y=, asinpdy
N
YN _ .
ayM - f 0: (f,ﬂ,X,Y) |Y=l asmgy d¢
N
YN _ .
TxyM . f TIy (f,ﬂ,X,Y)|Y= 1 asiny d¢
N

where [ stands for integration of the N-th interval and 0,’(‘, ol{ oX, oY, X, 7Y are given in
Appendix 1.

» Yy Uy Txyr “xy
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o A RS




MR A s e e AL A S e gt it i e e e Rt e Ja RatUA S Shd S S

-41 -
,Q
’l
A APPENDIX 4: INTEGRALS OVER SINGULARITIES FOR ELLIPSE
‘3: The integrals over the singularities for the ellipse can be approximated by the following
{ simple analytic expressions!%] :
o - .
o Ao = e————— [6w® + (3 - 2k?) w* - 6k2w? - k*)
148 xM 2 2.3
4ar (k° + w?)
XM _ k 6 Nwd 4 al2a? - K

-)‘ AayM—e———————[-Zw - (1-6k°)w* +6kw* - k*]

Y 4 (k2 + w?)3

. y 2

ATy = e——————[- 9w’ - (6 + 2k?) w® +k? (2- k?) w]

P 4 (k2 + w2 )3
%)
l
L k
2 AoX = e—————— [-wS + 6k2w* + k2 (6 - k?) w? - 2k*]
[ am (k2 + w?)?

-: k

J Dofi = e—————— [- w5 - 6k?w* + k? (2 - k?)w? + 6k*]
X 47 (k2 + w?)3
p ArT™M = _ 1 1 2y wS 2 2y w3 4

y Teym = "€ ; 23[( - 2k“)w” + 2k“ (1 + 3k°)w° + 9k*w]

: 4n (k° + w?)

\ where k = b/a

4 w = tan g, (p = elliptic parameter value of mid-point of M-th interval)

Note that there is a sign change from the original (Reference 6) in the expression for Ao;,[::.
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.:::f.j APPENDIX 5: STRESSES CLOSE TO ELLIPSE
35
5
£ The stresses at a point infinitesimally close to the ellipse subjected to a body force may be
{ calculated in the following manner as given by Nisitanil4! in somewhat less detail.
. 2y
:‘f _: Consider an elliptic arc (Fig. A1) of length 2¢ on the x’ axis. When a body force having
o densities p,-, p,- acts on the arc, the stresses at a point (0, b) (b small) due to p, dx’ and p, dx’ are
o obtained by differentiating the equations of the stress field in an infinite plate (Appendix 1{.
L x' 3x'2 + bZ b b2 'l
:_\: dax, = ._(____) px,dx' + g py,dx’
N 4r (b2 + x'2)? 4w (b2 +x'?)
-
b "
1eat2 2 2 45’2
X (x“-b b (3b“ +
T doy, = - _(___) x-dx' - (_;) py'dX'
(o 4m (b2 + x'2)? am (b? +x2)?
A
e b (3x'2 + b2 x(3b2 + x"2
: drgy = -ROLIARY L x@lexh)
25 (b? +x'2)? (b2 +x'2)?
r.d
d \'-
. X ’ e ’
o Putting x’ =btan0; cp=tan'1;; dx’' = bsec? 6 df and integrating:
.,-‘r_.
5t 7
et 1 . 3sin? @ , -,
‘:: oy = — f sin 6 cos +1) py + (cos® 8 - sin® ) p,- dO
L 4n cos? 0
- 4
3
4
43 -
. , = — - & 29 - - 2 2
::j o, o j [ sin 0 cos 0 (tan‘ @ - 1) p,. - (3 cos 0 +sin’ 6) py:] dé
. -y
-’.:."-.i Ty = 1 j [- (3 sin? @ + cos? 9) Py + sin 0 cos 0 (3 + tan? 9) py] d0
- -y
A,
'.‘.':
'.-,'; As b tends to zero, 6 tends to 7/2 and the stresses become:
e
= =0 o 1 1 A1
- A y = . ¢ B e - ;; Toty! & = — '
i"{ X ’ y 2 py X'y 2 px ( )
13
: :‘4 Note the difference in sign of 7,.,» compared with that in Reference 4.
(]
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Resolving the force densities along x and y axes as in Figure A2 gives

-

-py sin 0 cos 8 + p, cos 0 sin 6

.:'- 5 ﬁa":’*‘;'f.:’ - '..“:‘

Px’

1
2 (Px = 8,)sin 20 (A2)

Py = Py sin2 @ + Py cos? 6

F J
g

Y

KAAAAAA:  RRAN

Resolving the stresses along the x' and y' axes as in Figure A3 gives

= .2 2 .
Ao, = o, 8in° 0 + 0, cos” 0 + 21, . sin 6 cos §

Ao, = 0, cos? 8 + 0. 8in2 0 - 27,. . sin O cos 6
Aty, = -0, cos@sinb + 0y cosfsind -1, (cos? @ - sin? @)

Substituting Equations (Al) and (A2) into the above gives

sin 0 cos 6

1
Ao, = -Ecos2 6 (p, cos? 9 + Py sin2 @) - 2

(Px - py)sin 20

1 1
= —pr cos? 0 (1 +sin2 0) + Epy (cos? 0 sin? 9)

x b+4 20 40 by /]
- — + - + — -
16( cos cos 49) 16(1 cos 40)

8in 6 cos 0
- —_————

3 (Px~ py)sin 26

1
—-z—sin20 (px cos® 6 + p, sin? 0)
1 2 g ain2 1 2 2
— py (cos® 0 sin 0)--Ep,(sm 0) (1 + cos* 0)

2

2% 1 - cos ) - ’ 9
16( - cos )—16(5-40002 - cos 40)
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(cos? @ - sin? 9)
4

- cos 0 sin 8

N A'rxy = - 2

e

(py cos? 0 + Py sin2 0) + (px - py)sin 20

1 1
-5 Px (sin® 0 cos 6) - 2 Py (cos> 6 sin 0)
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Px Py
- g (25in 26 - sin 46) - = (25in 20 +sin 46)
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APPENDIX 6: ADDITIONAL INFLUENCE COEFFICIENTS FOR
COMBINED CRACK AND ELLIPSE

The stresses, om o ome and T;;‘M o» O the M-th interval of an ellipse due to a pair of

point forces on the N-th interval of a crack are given as!’] :

OMe = j 3 c> - (n-e)’ dn
N E £=0
aof
me = ETE ¢z - (n-e) dn
N £=0

N J. 9 Xy
xyMe as
N

(=0
where
aoi‘ 1
= [-3A% + 6A2m? +m*] +
% [t=0  4my? (A2 + m2)3 4my? (A? +n?)*
X [-5AS + (13n2 + 12n - 12) A* + n2 (17n? - 72n + 72) AZ - n* (n? - 12n +12))
dcx
- = 1 [A* - 6A2m? +m?] —21
O |i-0  4my? (A2 +m?) 4my? (A? +n2)*
X [- A® + (5n2 - 36n + 12) A* + n2 (5n? + 56n - 72) A2 - n* (n? + 4n - 12)]
<,
o
N a-rx 1
= xy - Am [-8A2+m?]+ ——
b 0% |i=0  27y? (A2 +m?)? 4my? (A? + n2)*
2;3' X [2(3n +2) AS + 4n (n? - 14n + 12) A? - 2n3 (n? - 18n + 24) A]
N
._j
¥ x n-y n+y
Ot and A= -~ -, m= , N =
- y y y
M
d" 373(‘,
' » Note the change of sign in -g as compared to the equation given in Reference 7.
’t
P’I

: -'..-".‘--"_.’..- ~ e .

“u

"

o

LS

"

- Clai T
D R
\_\-.




Caox

- -

I.

-47 -

AKX

The stresses, af:c and OIJ:C on the M-th crack interval due to point forces on the N-th elliptic

interval are ]

A4 AN

[

'. “;
%
2z
)
>
z
<
z

xMe 4
0

'y L 3
LR Rl
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(see Appendix 3). )
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